Experimental quality evaluation of lattice basis reduction methods for decorrelating low-dimensional integer least squares problems

نویسنده

  • Peiliang Xu
چکیده

Reduction can be important to aid quickly attaining the integer least squares (ILS) estimate from noisy data. We present an improved Lenstra-Lenstra-Lovasz (LLL) algorithm with fixed complexity by extending a parallel reduction method for positive definite quadratic forms to lattice vectors. We propose the minimum angle of a reduced basis as an alternative quality measure of orthogonality, which is intuitively more appealing to measure the extent of orthogonality of a reduced basis. Although the LLL algorithm and its variants have been widely used in practice, experimental simulations were only carried out recently and limited to the quality measures of the Hermite factor, practical running behaviors and reduced Gram-Schmidt coefficients. We conduct a large scale of experiments to comprehensively evaluate and compare five reduction methods for decorrelating ILS problems, including the LLL algorithm, its variant with deep insertions and our improved LLL algorithm with fixed complexity, based on six quality measures of reduction. We use the results of the experiments to investigate the mean running behaviors of the LLL algorithm and its variants with deep insertions and the sorted QR ordering, respectively. The improved LLL algorithm with fixed complexity is shown to perform as well as the LLL algorithm with deep insertions with respect to the quality measures on length reduction but significantly better than this LLL variant with respect to the other quality measures. In particular, our algorithm is of fixed complexity, but the LLL algorithm with deep insertions could seemingly not be terminated in polynomial time of the dimension of an ILS problem. It is shown to perform much better than the other three reduction methods with respect to all the six quality measures. More than six millions of the reduced Gram-Schmidt coefficients from each of the five reduction methods clearly show that they are not uniformly distributed but depend on the reduction algorithms used. The simulation results of the reduced Gram-Schmidt coefficients have clearly shown that our improved LLL algorithm tends to produce small reduced Gram-Schmidt coefficients near zero with a larger probability and large reduced Gram-Schmidt coefficients near both ends of 0.5 and −0.5 with a smaller probability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low - Dimensional Lattice Basis Reduction Revisited ( Extended Abstract )

Most of the interesting algorithmic problems in the geometry of numbers are NP-hard as the lattice dimension increases. This article deals with the low-dimensional case. We study a greedy lattice basis reduction algorithm for the Euclidean norm, which is arguably the most natural lattice basis reduction algorithm, because it is a straightforward generalization of the well-known two-dimensional ...

متن کامل

Integer Ambiguity Estimation with the Lambda Method

High precision relative GPS positioning is based on the very precise carrier phase measurements. In order to achieve high precision results within a short observation time span, the integer nature of the GPS double difference ambiguities has to be exploited. In this contribution we concentrate on the integer ambiguity estimation, which is one of the steps in the procedure for parameter estimati...

متن کامل

Robust high-dimensional semiparametric regression using optimized differencing method applied to the vitamin B2 production data

Background and purpose: By evolving science, knowledge, and technology, we deal with high-dimensional data in which the number of predictors may considerably exceed the sample size. The main problems with high-dimensional data are the estimation of the coefficients and interpretation. For high-dimension problems, classical methods are not reliable because of a large number of predictor variable...

متن کامل

N-Dimensional LLL Reduction Algorithm with Pivoted Reflection

The Lenstra-Lenstra-Lovász (LLL) lattice reduction algorithm and many of its variants have been widely used by cryptography, multiple-input-multiple-output (MIMO) communication systems and carrier phase positioning in global navigation satellite system (GNSS) to solve the integer least squares (ILS) problem. In this paper, we propose an n-dimensional LLL reduction algorithm (n-LLL), expanding t...

متن کامل

Numerical Properties of the LLL Algorithm

The LLL algorithm is widely used to solve the integer least squares problems that arise in many engineering applications. As most practitioners did not understand how the LLL algorithm works, they avoided the issue by referring to the method as an integer Gram Schmidt approach (without explaining what they mean by this term). Luk and Tracy were first to describe the behavior of the LLL algorith...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • EURASIP J. Adv. Sig. Proc.

دوره 2013  شماره 

صفحات  -

تاریخ انتشار 2013